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Abstract. We have studied the permittivity of a thin (planar) percolation system (pes) spread
over a plane which is in turn sunk into the host medium. We present the numerical simulation
of the Frs as well as RG speculations. It appears that « and s indices (e(L, pe, w = 0) ~ L,
£(L = 00, po, @) ~ w=1"W) of the planar and 20 systems are different: A(s/v) = (.25 and
upps = 0.42 < uap = 0.5. We find out that the Shklovskii~Efros scaling relation is true in spite
of the fact that the PPs is a non-universal system. The indices depend upon the permittivity of
the host medivm.

The object of this investigation is the so-called planar percolation system (PPS) which is a
metal-insulator mixture spread over a plane that is in turn sunk into a uniform insulating
medium (figure 1). Examples of such systems are thin (island) films and thin composite
(granular} films. Recenily more attention has been paid to properties of thin films, which
are widely used in optics. To date there is no clear physical description of certain absorption
and refiection features of the systems {see [1] and [2]) and references therein), There are
similar difficulties in interpreting the absorption properties of multilayer coatings built up
of thin cotnposite {(granular) sheets. We attempt to clear up the sitnation.

S———

Figure 1. An example of a planar system, All the inclusions, which are actually metallic spots,
are lying in one plane. Above and below this plane there exists an insulating medium. If the
electric field is applied along the plane some of the force lings should lie in the plane but some
should leave this plane starting at the top (bottom} of one inclusion and return through the top
(bottom) of the other inclusion. Thus the pattern of force lines is three dimensional,

Efros and Shklovskii [3] were the first to point out that the PPS and two-dimensional (2D)
systems were different if one were interested in the effective permittivity gegr. 2D systems are
systems in which properties are independent of one of the coordinates, say z. An example
of a 2D system is a set of metallic cylinders immersed in a dielectric matrix with their axes
parallel to z (figure 2), Thus the inclusions in the planar system differ from the 2D case in
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having top and bottom surfaces, as in the 3D case (figure 3). The difference between the
planar system and the 3D system is that all inclusions in the planar system lie in one plane
(figures 1,3). The force line schemes illustrating the difference between these systems are
also presented in figures 1-3. All the force lines in the 20 system are perpendicular to the
z axis while in the planar systems and in the 3D systems this is not the case,

Figure 2. A 2D system is a system having properties independent of one of the coordinates, say
Z. If an extemal electric field is applied perpendicular to the z axis all force lines should be
perpendicular to the z axis too, Thus we have a 20 pattern of force lines,

Figure 3. In a 3D system all inclusions are distributed at
random. Independent of the direction of the applied electric
field, the patiern of force lines is 3D.

To compare the 2D system with the planar system it is convenient to introduce the linear
capacity C'(L,) = C/L, where C is the capacity of the system and L, is thickness of the
system. C' is a quantity that is linearly proportional to the effective permittivity .. For a
planar system L, = ag, where g is the average diameter of an inclusion. The linear capacity
C},PS is defined as

Ches = C/a.

For the 2D system we should consider a limit process L, — oo. Figure 2 presents an
(L x L x L;) system, which as L; — 00 becomes a finite (L x L) 2D system. For the finite
{L % L) 2D system one can introduce the linear capacity

Cip = lim CL)= lim CL/LXLy).

It is well known [3,6] that near the percolation threshold p. the value of g is
independent of L if L is greater than the correlation length &; in the opposite case
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Eege(L) ~ L [3], where sap =~ 0.8 [4,5], sap = 1.33 £ 0.02 [6], and v is the correlation
length index (vop = % [6], vsp =~ 0.88 [4]). It is obvious that g.¢ differs from unity by
virtue of the linear capacities

Cy= lim (£L;/a)/L; = L/a )
between neighbouring metallic clusters where £ is a shared perimeter of these two clusters.
We consider the distance between neighbouring clusters to be equal to qp. At the percolation
threshold the average value of £ is proportional to LY where y is some critical index.

Let us come back to the PPS and consider a finite (L x L X a) system. Calculating the
linear capacity C!, of two metallic clusters in such a system one has to take into account
surface charges on the top and bottom surfaces of inclusions. To estimate the capacity it is
reasonable to consider a cluster as a metallic disc of thickness L, = ¢ and ascribe to the
disc radius the value of the cluster gyration radius ry ~ L* [7]. The problem in evaluating
the capacity between neighbouring discs is thoroughly considered in [8]. It has a solution
in the form of Kirchhoff’s well known correction formula for a capacitor and gives, due to
edge effects on the value (1) for the linear capacity C, the extra logarithmic term

AC =~ [8% In( rgﬁ/a)] /L. @
In the case of the PPs we shall take L, =~ a. Comparing (1) and (2) one would expect only
a logarithmic correction to the power law epps(L) ~ L% In L. The same result (sppg =~ S2n)
can be easily obtained with the real-space renormalization group (RG) scheme proposed by
Bernasconi [9]. In terms of a conventional bond problemt (see for example [5] and [10Q]) the
planar system is imitated by one of the layers in the cubic network (see [11] and figure 1).
Following [9] a block of & x b bonds belonging to this layer is substituted by a Wheatstone
bridge (see figure 4). To account for the connection between two points of the PPs through
the ambient medium it seems reasonable at the nth step of the RG transformation to consider
the extra bonds with conductance gf]") placed in parallel to each non-superconducting bond

of the pps (figure 4). The value of gt(,") may be chosen to be equal to the conductance
between two points in host space separated by a single renormalized bond. This value
is equal to 30‘,?") = 3o,b" [10], where o, and cr,f") = opb" are the conductance of the
original and renormalized bonds of the host medium. As the size of the system increases
the conductance of the renormalized ‘metallic’ bond lying on the plane also increases,
governed by Bernasconi’s RG equation [9]

(nt1y {n)
T = g0y

where A, = &™®/¥, For the PPS, instead of a single RG equation we obtain a system of RG
equations;

1
A = huofy il D =gl

1 Below, we study a related problem of a metal-superconductor mixture sunk into a host medium with conductivity
on. The conductivity of metallic inclusions is o and that of superconducting ones is 0. The case o; = co from
a mathematical point of view is compietely adequate for the case of a metal-dielectric mixture in the & == O limit
[5, 10] but substituting & for £ and j for D, For convenience, at a finite frequency @ = 0 we also treat the system
in terms of the effective conductivity o,y which is connected with £, by a simple relation: owg = iwees/4n. In

our consideration this corresponds to the case with finite o;.
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Figure 4. A block of (bxbxb) bonds including (bx5)  Figure 5. The cutting surface splits the system in
bonds of the pps is presented as a Wheatstene bridge for  two and avoids crossing any superconducting bond.
(b x b} pps bonds and the extra bonds with conductance  The current through this surface determines the whole
gl(:') placed in parallel with each non-superconducting  conductance G.

bond of the eps.

with eigenvalues A, = b/ = b and b. The value of spps/v is determined by the largest
eigenvalue. Thus

|spps — s20] < (vap — $2p). 3

The (vap — sop) difference is not more than 0.02 [6). The case vyp = s2p corresponds to
the logarithmic correction for the power law.

On the other hand, to explain the experimental data of [2] Coniglio et al [11] treated
the system as a thick (L x L x L) 3D object and declared new values of critical indices s
and u different from those for the 2D case. The index u describes the frequency dependence
of gesr ~ 0~ (uap = 0.5 [6]). Furthermore, the authors predicted u to be near unity as
well as breaking the Shklovskii~Efros scaling relation u = #/(s + ) between indices [3].

To clear up the situation we carried out the numerical simulation of the PPS. In terms of
the bond problem we study the interaction of an electromagnetic field with the ppS in the
static (w = 0) case, which corresponds o the case o; = 00, as well as in the quasi-static
case (A = 2xc/ew > min L, &) which corresponds to the case of finite o t. We simulate the
planar system by one of the Jayers in a uniform (L x L x L) lattice (figure 1). To estimate
the value of the critical index s we explore the dependence of the effective conductivity opps
on the size L of the system at o; = 00 and ¢}, = oy, The concentration of superconducting
bonds in the metal-superconductor layer is equal to p.. There is an obvious relation between
the whole conductance G of the (L x L x L) system and the value of opps:

G = (L — 1)on + opps. e

The main task of the computer simulation is to calculate the potentials ¢ of the nodes
of the (L x L x L) cubic network. First of all we extract superconducting clusters by
Tarjan’s algorithm [12]. Regarding each superconducting cluster as one node (all sites
of the superconducting cluster have the same potential) we aveid the iteration procedure
h = on/os — 0 and solve the direct problem oy, = 1, 0, = 00.
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To diminish the influence of boundaries we apply periodic boundary conditions not only
in the directions perpendicular to the applied field but also in the parallel direction:

olx, ¥y, D =9¢x, y,2+L)=0¢x, y+ L, 2}=dx+ L,y 2)=-U.

Thus, we eliminate not only dielectric walls around a sample but also the superconducting
plates usually used (see for example [10]) to apply the external voltage UU. These plates
would strongly disturb the system. In our case only the external electric field E=U/L is
applied to the system parallel to the x axis.

In the static case (o; = c0) we have a problem: how to calculate &. Indeed, the
currents through superconducting bonds are left completely undetermined and hence the
current through any plane x = constant is undetermined too. To settle this problem we
extract the so-called cutting surface (see figure 5). This surface splits the system in two
without crossing any superconducting bond. The current through this surface determines
the whole conductance G. For each random realization of the system we caiculate the
conductivity of the PPS (o, = o) and the conductivity of the corresponding 2D system
{on, = 0). These turn out to be different. At the percolation threshold the ratio opps/oap
behaves as L3"/Y with s"/v = 0.25 & 0.01, which agrees with the result obtained in [11]
and contradicts both {2) and (3). The results of our computer simulation are presented in
figure 6. Thus

’f
Sip < Spps = Sp -+ 5.

log (Upps /U:D}
i

}“_
1:0 T T T T R B

log £

Figure 6. The dependence of the ratio apps/oap on  Figure 7. An example of a configuration that makes
the system size L. By calcolating the ratio we consider  a different contribution to the capacity of the pPs and
the same random configuration for both the pps and the  to the capacity of the 2D system. The part AB of the
2D system and then average over the sequence of 300 cluster is completely hidden in the 2D system but takes
realtzations. part in the production of capacity in the pps,

The key to this inequality is that there are some parts of the clusters that do not make
any confribution to the whole capacity for the 2D system but do for the PPS (see figure 7).
These effects are closely connected with the planarity of the graph of an infinite cluster and
cannot be observed for all (d — 1)-hyper-plane systems, but only for 4 = 3. To verify this
assumption we perform the computer simulation for d = 2. The percolation 1-hyper-plane
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system (linear system) is a 1D percolation system lying on the plane of the host medium.
This linear system may be thought of as a system of parallel strips iying in one plane.
The field is applied parallel to the plane and perpendicular to the sirips. To calculate the
conductivity we use the transfer matrix algorithm [13]. The exponent of the linear system
appears to be equal to that of the 1D system, which confirms our assumption,

To calculate the effective conductivity oppg in the quasi-static case we use the well
known transfer matrix method [11, 13]). The only dissimilarity is that we consider periodic
boundary conditions along the applied field. In other aspects the scheme of the simulation
is the same as in the static case but the ratio & = oy/os is finite. At high values of &
{(see figure 8) opps behaves as A with the value of upps = 0.420 £ 0.04, which is near
the Efros and Shklovskii [3] prediction upps = ¢/(spps + ) =~ 0.44 £ 0.10. The index
Spps = Sap + 5 is a new PPS index. We use for ¢ its 2D value #ap = vop [16]. Indeed, if
the host medium is an insulator and L, is equal to the size of the metallic inclusion, the
index ¢ describing the conductivity of a metal-insulator mixture above p. is the same for
both planar and 2D systems.

0.0 IH(O')

-0.5

-1.0

-1.5

In(h)
TUSN60 0 -8, g 0 0.0

Figure 8, The quasi-static case. The dependence of the effective conductivity of the system
on the ratio & = om/fos. Curve 1 represents opps, curve 2 azp. The systerns produced during
transfer matrix simulation are of size (20 x 20 % 5000).

The frequency dependence of gpps ~ w=%® is stronger than that of the 2D system,
contrary to the statement of Coniglio et al [11] who predicted that (1 — «) is near zero.
This visible disagreement is not a consequence of a discrepancy in computer simulation
results but is due to different interpretation of the results. Coniglio et al [11] applied the
scaling hypothesis to the whole conductance G of an (L x L x L) system. They assert

o LY om =0 (5a)
G~ { gLt g5 = 00 (5b)
c;as“"“)L O and o, finite, (5¢)

From (4) we can see that in the limits o; £ 00 and o, = oy, = 0 the whole conductance G is
equal to the PPS conductance or conductivity, which is exactly the same. The contribution of
the remaining host medium is negligible. In the o5 = oo limit the same behaviour foliows
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from (4) and the asymptotic ratio (onL)fopps ~ L~0es/v-1} 4 Q0 as I. — o0o0. Hence,
the results obtained in this work agree with (5ap) and (5h). At conditions corresponding
to (5¢), opps according to scaling is proportional to oo (!=%#s) and is a finite quantity
independent of L. Using (4} we obtain in the L — oc limit that G =~ oy, L. This expression
formally agrees with (5¢) at # = 1. This high value of u 33 ¢/(s + ) is due to shunting of
the planar system by the ambient host medium and only denotes that the value of opps is
finite, saying nothing about its vajue.

Besides the scaling relationship between indices we observe another behaviour of opps
at A — 0: if there is no percolation channel in the system then opps ~ k, otherwise
opps ~ zp (see figure 8). The observed cross-over illustrates the standard finite scaling
behaviour of appg = ooh®* f (L/E(h)) with

70 {"m ¥ =0 ©
1 X — 00

where &(h) ~ h™*/¢+9) i5 a cormrelation length at finite A. At (L/£(h)) > 1 we have
opps ~ N and at (L/E(#)) < 1 we have oppg ~ o' W(L). To find the dependence W (L)
we consider the (L x L x M) system. The computer simulation shows that as M varies
from unity to infinity opps changes from its 2D value to some finite value (see figure 9).
W (L} respectively changes from L=*/* to L=%/¥_ There is a corresponding correlation
length £, ~ L determining the thickness of the system starting with which we observe
macroscopic properties independent of M.

s(M) / o(w)

.40

0.20

0.00
0.00 2,00 4.00 £.00 400 1000 1200

Figure 9. The dependence of opps(M, L)/opps(c0, L) on the period M in the direction
perpendicular to the plane of the pps for fixed values of L: A, L =4; G, L =8; », L =
16; +, L =24,

If o1, # o, opps depends on both oy, and oy,. The dependence can be formally rewritten
in the form opps = oh" f (T, h, hopfon). As oy tends to zero opps goes to ogp, if
oy = O we obtain the previous results. OQur computer simulation shows that the exponent
spps depends upon the conductivity oy of the host medium (figures 10 and 1) and as a
consequence it is not universal. It is bounded by

Fop < SPP§ < Smax
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1.32;
1.28
1,24
Sprs
1.29
1.18
Figure 10. The dependence of spps,/v on 1/oy (the
P V] S— SN S ————— inverse value of the host medium conductivity). The
0 0.2 0L 06 08 10 12 dashed line is an extrapolation to &, = 0o, which
1o produces spps (0)/v = 1,31 £ 0.02.
S?Psfv
1.35 -
3 T
1.253
1.15 4
1,05 ]
: o
0.95 — T
.1 1 10

Figure 11. The dependence of spps/v on the conductivity oy, of the host medium. The linear

part of the plot agrees with the dependence that is obtained by means of RG consideration {see
figure 14).

where Sy = v{1.31 £ 0.02) >~ 1.4] (figure 10).

Now we present some speculations in terms of RG evaluation to explain the result of the
computer simulation. To take into account the additional configuration displayed in figure 7
we should introduce not only g,(l") but also ng”) which is a conductance ‘over a point’ (see
figure 12). In terms of the Bernasconi scheme the additional configurations appear only for
b > 2. To simplify the consideration we confine ourselves to b = 3.

What values are gﬁ") and né”’ equal to? To answer this question we must consider the
internal structure of a ‘metallic’ bond at the nth step of renormalization. It has a complicated
structure. First, the superconducting cluster is not an intact spot but a complicated fractal,
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Figure 12. To take into account the additional conﬁguratlon Figure 13. The scheme of the ‘metallic’ bond.
displayed in figure 7 we should introduce not only gIl Vbutalso  Different parts of the bond are displayed with
conductivity 7" ‘over the point’. In terms of the Bernasconi  different resolution. It is seen that there are
scheme the addmonal configuration appears only for b > 2, To  Places separated by distance ay.

simplify the consideration we confine ourselves to & = 3.

almost each point of which may be a boundary point. So, gé") is limited by oL, where

= 91748 =~ 1,895 (5] is the fractal dimension of an infinite percolation cluster, and
L =", Second, the terminal of the dangling superconducting bond is not just a point but
looks rather like a bunch. The distance between the ends of conducting bonds separated by a
dielectric bond (points A and B in figure 13} is not equal to b" but is about the infinitesimal
gap ag. The set of these gaps is responsnb]e for the peculiarity of the dielectric constant at
the percolation threshold. Thus both gh ) and C}'ZD are determined by the same topology: the
tips of bunches separated by distance ag (see also [15]). Hence g(") is at least proportional
1o oy (" 11 seems reasonable to expect that at oy € o, the conductivity through the medium
is deterrnmed by tips of bunches and J'r("} o~ o*,ﬁﬁ’scrh/am In the opposite limit oy > oy, not
only the tips of the bunches but also all the parts of the effective bond contribute to g{")
and 7™, thus ™ = oy, L%, Taking these cases as lower and upper estimations we use the
scheme displayed in figure 8. Both cases yield spps > s3p but with different dependence
upon oy,

In the case oy, € oy, it turns out that the properties of the PPS depend strongly upon
the environment, The index sppg logarithmically depends upon the conductivity of the host
medinm (figure 14). Certainly spps = sop at oy = 0. The exponent spps turns out to be
not universal. In the case oy, 3 o, we obviously obtain spps = vd;. So the draft RG
consideration produces the following bounds for spps:

S3p < Spps < vdi.

The lower limit is achieved at g, = (; the upper limit is achieved as oy — ©00. This
qualitatively agrees with the results of our simulation (figures 10 and 11).

Thus the PPS is a new non-universal system, the description of which demands that
we take into account not only a layer with a percolation system but also the surrounding
medium. In some sense we have non-local constitutive equations. The value and the scaling
properties of opps depend on the nature of the medium at distances less than the correlation
length £,. This fact is very important for designing multilayer coatings with thin layers
made of granular materials since we should use the constitutive parameters depending on
the properties of neighbouring layers.
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Figure 14, The dependence of the critical index

YO AR FAAAE~5) DARARAE- o AL 7 HARLEREAR 3 ki FY spps/v on the conductivity of the host medium

for :rh("’ ~ oﬁ’,}a},/«m, The dependence is

host medium conductivity obtained in terms of RG considerations.

If we consider a thick sheet of granular material we have to take into account not only

the cross-over from the 2D system to the 3D system [14] but also the effects described above,
The impedance of the system would be determined by the value of cpps.
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