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The permittivity of a planar percolation system 
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Sciences, Izhorshja 13/19. Moscow, 127412. Russia 
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Abstract. We have studied the permittivity of a thin @lanar) percolation system (PPS) spread 
over a plane which is in Nm sunk into the host medium. We present the numerical simulation 
of the PPS as well as RC speculations. It appears thal U and s indices ( d L ,  p E ,  o = 0) - L + ,  
E ( L  = m, pc. U )  -OF"-"') of the planar and ZD systems are different A(s/u) 2 0.25 and 
upps 5 0.42 < um = 0.5. We find out that the Shklovskli-Efros scaling relalion is hue in spite 
of the fact that the PPS is a non-universal system. The indices depend upon the permittivity of 
the host medium. 

The object of this investigation is the so-caIled planar percolation system (PPS) which is a 
metal-insulator mixture spread over a plane that is in turn sunk into a uniform insulating 
medium (figure 1). Examples of such systems are thin (island) films and thin composite 
(granular) films. Recently more attention has been paid to properties of thin films, which 
are widely used in optics. To date there is no clear physical description of certain absorption 
and reflection features of the systems (see [l] and 121) and references therein). There are 
similar difficulties in interpreting the absorption properties of multilayer coatings built up 
of thin composite (granular) sheets. We attempt to clear up the situation. @= r' '.- 

Figure 1. An example of a planar system, All the inclusions, which are actually metallic spots, 
are lying in one plane. Above and below this plane there exists an insulating medium. If fhe 
electric field is applied along the plane some of the force lines should lie in the plane but some 
should leave this plane starling nt the top (bottom) of one inclusion and return through the top 
(bottom) of the other inclusion. Thus the pattem of force l i w  is three dimensional 

Efros and Shklovskii [3] were the first to point out that the PPS and two-dimensional (2D) 
systems were different if one were interested in the effective permittivity &E. 2D systems are 
systems in which properties are independent of one of the coordinates, say z.  An example 
of a ZD system is a set of metallic cylinders immersed in a dielectric matrix with their axes 
parallel to z (figure 2). Thus the inclusions in the planar system differ from the 2D case in 
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having top and bottom surfaces, as in the 3D case (figure 3). The difference between the 
planar system and the 3D system is that ail inclusions in the planar system lie in one plane 
(figures 1,3). The force line schemes illustrating the difference between these systems are 
also presented in figures 1-3. All the force lines in the ZD system are perpendicular to the 
z axis while in the planar systems and in the 30 systems this is not the case. 

A P vinogradov et a1 

L 

Figure 2. A w system is a system having properlies independent of one of lhe cwrdinates. MY 
E .  If an extemal electric field is applied perpendicular to the L axis al l  force lines should be 
perpendicular to lhe L axis too. Thus we have a ZD pattem of force lines. 

Figure 3. In a ID system all inclusions are distributed at 
random. Independent of the direction of the applied electric 
field, the panem of force lines is ID. 

To compare the 2D system with the planar system it is convenient to introduce the linear 
capacity C1(L,) = C / L ,  where C is the capacity of the system and L ,  is thickness of the 
system. C' is a quantity that is linearly proportional to the effective permittivity E ~ S .  For a 
planar system L, = a@, where a0 is the average diameter of an inclusion. The linear capacity 
Ckps is defined as 

cLs = C/a .  

For the ZD system we should consider a limit process L, -+ 03. Figure 2 presents an 
( L  x L x L,) system, which as L, -+ 03 becomes a finite ( L  x L )  ZD system. For the finite 
(L x L )  2D system one can introduce the linear capacity 

It is well known [3,61 that near the percolation threshold pc  the value of E.% is 
independent of L if L is greater than the correlation length E ;  in the opposite case 



4353 ~~ 

Permittivify ojplanar percolation system 

E ~ N ( L )  - LS" [3], where s j ~  N 0.8 [4,5], sm N 1.33 i 0.02 [6], and U is the correlation 
length index (WID = Q [61, YD N 0.88 [4]). It is obvious that ~ , f i  differs from unity by 
virtue of the linear capacities 

between neighbouring metallic clusters where L is a shared perimeter of these two clusters. 
We consider the distance between neighbouring clusters to be equal to (10. At the percolation 
threshold the average value of 1: is proportional to LY where y is some critical index. 

Let us come back to the PPs and consider a finite ( L  x L x a )  system. Calculating the 
linear capacity Cil of two metallic clusters in such a system one has to take into account 
surface charges on the top and bottom surfaces of inclusions. To estimate the capacity it is 
reasonable to consider a cluster as a metallic disc of thickness L, = a and ascribe to the 
disc radius the value of the cluster gyration radius rg - L* [7]. The problem in evaluating 
the capacity between neighbouring discs is thoroughly considered in [SI. It has a solution 
in the form of Kirchhoff s well known correction formula for a capacitor and gives, due to 
edge effects on the value (1) for the linear capacity C&, the extra logarithmic term 

In the case of the PPS we shall take L, N a. Comparing (1) and (2) one would expect only 
a logarithmic correction to the power law &pps(L) - LS/" In L .  The same result (spps N sm) 
can be easily obtained with the real-space renormalization group (RG) scheme proposed by 
Bernasconi [9]. In terms of a conventional bond problemt (see for example 151 and [IO]) the 
planar system is imitated by one of the layers in the cubic network (see [ 111 and figure 1). 
Following [91 a block of b x b bonds belonging to this layer is substituted by a Wheatstone 
bridge (see figure 4). To account for the connection between two points of the PPS through 
the ambient medium it seems reasonable at the nth step of the RG transformation to consider 
the extxa bonds with conductance gf' placed in parallel to each non-superconducting bond 
of the PPS (figure 4). ?he value of gf) may be chosen to be equal to the conductance 
between two points in host space separated by a single renormalized bond. This value 
is equal to 3uF) = 3qb"  [lo], where o h  and U?' = uhb" are the conductance of the 
original and renormalized bonds of the host medium. As the size of the system increases 
the conductance of the renormalized 'metallic' bond lying on the plane also increases, 
govemed by Bernasconi's RG equation 191 

where h, = F"". For the PPS, instead of a single RG equation we obtain a system of RG 
equations: 

t Below, we study a related problem of a metal-superconductor mixture sunk into a host medium with conductivity 
oh. The conductivity of metallic inclusions is om and that of superconducting ones is U,. The case us = m from 
a mathematical point of view is completely adequate fur the ose of a "Mielectric mixture in the o = 0 limit 
[S. IO] but substituting o for E and j for D. For convenience, at a finite frequency d # 0 we also treat the system 
in terms of the effeuive conductivity aer which is connected with EH by a simple relation: aer = iw~,w/4n. In 
our consideration this corresponds I o  the case with finite U,. 
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Figurel  A block of (bxbxb) bonds including (bxb) 
bonds of the PPS is presented as a Wheatslone bridge for 
(b xb) PPS bonds and the extra bonds wilh condunance 
&' placed in parallel with each non-superconducting 
bond of the PPS. 

Figure 5. The cutting surface splits the system in 
two and avoids crossing any superconducting bond. 
The currenl through this surface determines the whole 
conductance G, 

with eigenvalues A, = b"D/" = b and b. The value of spps jv  is determined by the largest 
eigenvalue. Thus 

IsPPS -%DI < (VZD - SZD). (3) 

The (wm - SZD) difference is not more than 0.02 [6]. The case UZD = corresponds to 
the logarithmic correction for the power law. 

On the other hand, to explain the experimental data of [2] Coniglio etal [ l l ]  treated 
the system as a thick ( L  x L x L )  3D object and declared new values of critical indices s 
and U different from those for the 2D case. The index U describes the frequency dependence 
of - (UZD = 0.5 [6]). Fuithermore, the authors predicted U to be near unity as 
well as breaking the Shklovskii-Efros scaling relation U = t / ( s  + I )  between indices [3]. 

To clear up the situation we cariied out the numerical simulation of the PPS. In terms of 
the bond problem we study the interaction of an electromagnetic field with the PPS in the 
static (w = 0) case, which corresponds to the case os = 03, as well as in the quasi-static 
case (A = k c / w  >> min L ,  c) which corresponds to the case of finite 0,'. We simulate the 
planar system by one of the layers in a uniform ( L  x L x L )  lattice (figure 1). To estimate 
the value of the critical index s we explore the dependence of the effective conductivity opps 
on the size L of the system at us -00 and oh = U,,,. The concentration of superconducting 
bonds in the metal-superconductor layer is equal to p c .  There is an obvious relation between 
the whole conductance G of the ( L  x L x L )  system and the value of opps: 

G = ( L  - 1 ) ~ h  + oppps. (4) 

The main task of the computer simulation is to calculate the potentials @ of the nodes 
of the ( L  x L x L )  cubic network. First of all we extract superconducting clusters by 
Tarjan's algorithm [12]. Regarding each superconducting cluster as one node (all sites 
of the superconducting cluster have the same potential) we avoid the iteration procedure 
h = o,,,/os 4 0 and solve the direct problem U,,, = 1, os = 03. 
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To diminish the influence of boundaries we apply periodic boundary conditions not only 
in the directions perpendicular to the applied field but also in the parallel direction: 

@ ( x *  Y .  z )  = @ ( x ,  y ,  z + L )  = @ ( x *  Y + L, 2 )  = @(I + L ,  y. z )  - U. 

Thus, we eliminate not only dielechic walls around a sample but also the superconducting 
plates usually used (see for example [lo]) to apply the external voltage U. These plates 
would strongly disturb the system. In our case only the external electric field E = U/L is 
applied to the system parallel to the x axis. 

In the static case (us = CO) we have a problem: how to calculate G. Indeed, the 
currents through superconducting bonds are left completely undetermined and hence the 
current through any plane x = constant is undetermined too. To settle this problem we 
extract the so-called cutting surface (see figure 5). This surface splits the system in two 
without crossing any superconducting bond. The current through this surface determines 
the whole conductance G. For each random realization of the system we calculate the 
conductivity of the PPS (ab = a,,,) and the conductivity of the corresponding ZD system 
(ab = 0). These turn out to be different. At the percolation threshold the ratio (TPPS/a*D 

behaves as Ls"/" with S"/Y = 0.25 f 0.01. which agrees with the result obtained in [ll] 
and contradicts both (2) and (3). The results of our computer simulation are presented in 
figure 6. Thus 

SzD < SpPS = SZD + SN. 

31 

Figure 6. The dependence of the ratio oppg/om on 
the system size L. By calculnting the ratio we consider 
lhe same random configuration for both the PPS and the 
ZD system and then average over the sequence of 300 
realizations. 

Figure 7. An example of a configuration that makes 
a different contribution to the capacity of lhe PPS and 
to the capacity of lhe 2n system. The part AB of the 
cluster is completely hidden in the ZD system bul takes 
part in the production of capacity in the PPS. 

The key to this inequality is that there are some parts of the clusters that do not make 
any contribution to the whole capacity for the 2D system but do for the PPS (see figure 7). 
These effects are closely connected with the planarity of the graph of an infinite cluster and 
cannot be observed for all (d - 1)-hyper-plane systems, but only for d = 3. To verify this 
assumption we perform the computer simulation for d = 2. The percolation 1-hyper-plane 
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system (linear system) is a I D  percolation system lying on the plane of the host medium. 
This linear system may be thought of as a system of parallel strips lying in one plane. 
The field is applied parallel to the plane and perpendicular to the sirips. To calculate the 
conductivity we use the transfer matrix algorithm [13]. The exponent of the linear system 
appears to be equal to that of the ID system. which confirms our assumption. 

To calculate the effective conductivity apps in the quasi-static case we use the well 
known transfer matrix method [II ,  131. The only dissimilarity is that we consider periodic 
boundary conditions along the applied field. In other aspects the scheme of the simulation 
is the same as in the static case but the ratio h = a&s is finite. At high values of h 
(see figure 8) ups behaves as hum with the value of upps = 0.420 rt 0.04, which is near 
the Efros and Shklovskii 131 prediction upps = f/(sppS + t )  N 0.44 rt 0.10. The index 
spps = s 2 ~  + s" is a new PPs index. We use for t its ZD vaIue tm = UZD [16J. Indeed, if 
the host medium is an insulator and L, is equal to the size of the metallic inclusion, the 
index t describing the conductivity of a metal-insulator mixture above pc  is the same for 
both planar and 2D systems. 

A P Knogradov et ai 

Figure 8. The qumi-static case. The dependence of the effective conductivity of the syslem 
on h e  ntio h = omfa,. Curve 1 represents a m ,  curve 2 a m  The systems produced during 
m f e r  matrix simulation are of size (20 x 20 x 5000). 

The frequency dependence of ~ p p ~  - 0-0.58 is ' stronger than that of the 2D system, 
contrary to the statement of Coniglio et a/ [ I  I ]  who predicted that (1 - U) is near zero. 
This visible disagreement is not a consequence of a discrepancy in computer simulation 
results but is due to different interpretation of the results. Coniglio et a/ [ I  11 applied the 
scaling hypothesis to the whole conductance G of an (L x L x L) system. They assert 

From (4) we can see that in the limits us # w and Oh = a,,, = 0 the whole conductance G is 
equal to the PPS conductance or conductivity, which is exactly the same. The contribution of 
the remaining host medium is negligible. In the U, = 00 limit the same behaviour follows 



Permittivio of plannr percolation system 4357 

from (4) and the asymptotic ratio ( u ~ L ) / u p p s  - L-(s"l"-') -t 0 as L --t ca. Hence, 
the results obtained in this work agree with ( 5 4  and (5b). At conditions corresponding 
to ( 5 ~ ) .  upps according to scaling is proportional to U ; ~ U ~ ~ - " ~ )  and is a finite quantity 
independent of L .  Using (4) we obtain in the L -t 00 limit that G Y u,,,t. This expression 
formally agrees with (5c) at U = 1. This high value of U >> t / ( s  + t )  is due to shunting of 
the planar system by the ambient host medium and only denotes that the value of upps is 
finite, saying nothing about its value. 

Besides the scaling relationship between indices we observe another behaviour of upps 

at h -+ 0: if there is no percolation channel in the system then upps - h,  otherwise 
apps - UZD (see figure 8).  The observed cross-over illustrates the standard finite scaling 
behaviour of upps = ush" f ( L / ( ( h ) )  with 

f ( x )  cf [ xs lu  + 

1 x + w  

where g(h)  - h-"/('+') is a correlation length at finite h.  At (L/.$(h)) >> 1 we have 
upps  - h U P W  and at ( L / g ( h ) )  < 1 we have apps -u,,,Y(L). To find the dependence Y ( L )  
we consider the ( L  x L x M) system. The computer simulation shows that as M varies 
from unity to infinity apps changes from its 213 value to some finite value (see figure 9). 
W ( L )  respectively changes from L-'m/" to L - s ~ p s ~ " .  There is a corresponding correlation 
length t Y L determining the thickness of the system starting with which we observe 
macroscopic properties independent of M. 

Figure 9. The dependence of wrs(M, L)lopps(m. L )  on the period M in the dkction 
perpeILdiCulv to the plane of the PPS for fixed values of L: A? L +, 0, L = 8; *, L = 
16: t, L =24. 

If a h  # U,, uPps depends on both U,,, and Oh. The dependence can be formally rewritten 
in the form upPS = ush'WS f ( r ,  h ,  hUh/u,,,). As tends to zero upps goes to um, if 
U,, = a,,, we obtain the previous results. Our computer simulation shows that the exponent 
spps depends upon the conductivity of the host medium (figures 10 and 11) and as a 
consequence it is not universal. It is bounded by 

SZD < SPPS < smax 
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1.32, 

1.20 

1 .18  

1 . 1 2  ~:~~ 110 produces sws(0)lv = 1.31 i 0.02. 

SPS 

Figure 10. The dependence of spP~/u  on 11% (the 
inverse value of the host medium conductivity). The 

0 0.2 0.L 0.6 0.8 1.0 1.2 dashed line is an extrapolation to UI, = m. which 

Figure 11. The dependence of spps/u on the conductivity of the host medium. The linear 
part of [he plot agrees with the dependence that is obtained by means of RG consideration (see 
figure 14). 

where smax =u(1.31 zk0.02) v 1.41 (figure IO). 
Now we present some speculations in terms of RG evaluation to erplain the result of the 

computer simulation. To rake into account the additional configuration displayed in figure 7 
we should introduce not only gt ’  but also rr’ which is a conductance ‘over a point’ (see 
figure 12). In terms of the Bemasconi scheme the additional configurations appear only for 
b > 2. To simplify the consideration we confine ourselves to b = 3. 

What values are &’) and HF) equal to? To answer this question we must consider the 
internal structure of a ‘metallic’ bond at the nth step of renormalization. It has a complicated 
structure. First, the superconducting cluster is not an intact spot but a complicated fractal, 
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Figure 12. To W e  into account the additional configuration 
displayed in figurr 7 we should introduce not only gt’ but also 
conductivity .,!“I ‘OW the point’. In terms of the Bemasconi 
scheme the additional configuration appears only forb > 2, To 
simplify the consideration we confine ourselves to b = 3. 

Figure 13. The scheme of the ‘metallic’ bond. 
Different parts of the bond are displayed with 
different resolution. It is seen that there are 
places separated by distance og. 

almost each point of which may be a boundary point. So, gf) is limited by UhLd‘, where 
dt = 91/48 Y 1.895 [5 ]  is the fractal dimension of an infinite percolation cluster, and 
L = b“. Second, the terminal of the dangling superconducting bond is not just a point but 
looks rather like a bunch. The distance between the ends of conducting bonds separated by a 
dielectric bond (points A and B in figure 13) is not equal to b” but is about the infinitesimal 
gap 4. The set of these gaps is responsible for the peculiarity of the dielectric constant at 
the percolation threshold. Thus both gf’ and U&’ are determined by the same topology: the 
tips of bunches separated by distance 4 (see also [lS]). Hence gf’ is at least proportional 
to 0%. It seems reasonable to expect that at oh << U,,, the conductivity through the medium 
is determined by tips of bunches and rf’ Y L&!iq&,,,. ~n the opposite limit a h  >> um not 
only the tips of the bunches but also all the parts of the effective bond contribute to gf’ 
and nf’, thus I$’ N ah‘hLdr. Taking these cases as lower and upper estimations we use the 
scheme displayed in figure 8. Both cases yield sPps > SD but with different dependence 
upon a h .  

In the case Oh C a,,, it turns out that the properties of the PPS depend strongly upon 
the environment. The index spps logarithmically depends upon the conductivity of the host 
medium (figure 14). Certainly spps = S2D at Oh = 0. The exponent SPPS tums out to be 
not universal. In the case oh >> U,,, we obviously obtain spps = vdp So the draft RG 
consideration produces the following bounds for spps: 

SZD < SPPS C vdi. 

The lower limit is achieved at Oh = 0; the upper limit is achieved as q, -+ 00. This 
qualitatively agrees with the results of our simulation (figures 10 and 11). 

Thus the PPS is a new non-universal system, the description of which demands that 
we take into account not only a layer with a percolation system but also the surrounding 
medium. In some sense we have non-local constitutive equations. The value and the scaling 
properties of apps depend on the nature of the medium at distances less than the correlation 
length (L. This fact is very important for designing multilayer coatings with thin layers 
made of granular materials since we should use the constitutive parameters depending on 
the properties of neighbouring layers. 
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I 
1 .w 0-0 

host medium conductivity 

F g r r e  14. The dependence of the critical index 
SPPS/Y on the conductivity of the host medium 
for rt’ - &U&,. The dependence is 
obtained in terms of RO considerations. 

If we consider a thick sheet of granular material we have to take into account not only 
the cross-over from the 2D system to the 3D system [14] but also the effects described above. 
The impedance of the system would be determined by the value of &ppS. 

References 

[ I ]  Sen P N and Tanner D B 1982 Phys. Rex B 26 3582 
Yagi1 Y, Yosefin M, Bergman D I and Deutscher G 1991 Phys. Rev. B 43 I 1  342 

[Z] Laibowitz R B and Gefen Y 1984 Phys, Rev. Lett. 53 380 
[31 Efroa A L and Shklovskii B I 1976 Pkys, Smtus Solidi b 76 131 
[4l Hemnann H I. Derrida B and Vannimenous I 1984 Phys. Rev. B 30 4080 
[5 ]  Vinogradov A P, Karimov A M. Kunavin AT. Lagarkov A N, Sarychev A K and Stember N A 1988 Dokl. 

A M  Nauk SSSR 275 S90 CEngl. Transl. 1988 Sov. Pkys.-Dokl. 29 214) 
161 Stauffer D 1979 Introduction to Percolation Theory (Loondon: Taylor & Francis) 

den Nijs M P M 1979 1. Phys. A: Math Gen. 12 1857 
Prank D J and Lobb C I 1988 Phys. Rev. B 37 302 

171 Feder I I988 Fractals (New York Plenum) 
(81 Landau L D and Lifshitz E M 1982 Electrodynamics of Continuous Media (New York: Pergamon) p U), 

[9] Bemasconi J 1978 Pkys. Rev. B IS 2185 
[IO] Kirkpauik S 1973 Rev. Mod. Phys. 45 514 
[ I l l  Coniglio A, Daoud M and Herrmann H I 1989 J.  Phys. A: Math Gen. 22 4189 
1121 Hopfcroft J E and Ta~jan R E 1973 Commun. ACM 16 372 
[I31 Denida B and Vannimenus I 1982 3, Phys. A: Math Gen. 15 L557 
114) Clerc I P. G i u d  0, Alexander S and Guyon E 1980 Phys. Rev. B 22 2489 
[IS] Dubrov V E, Levinshtein M E  and Shut M S 1976 Ur Erp. Teor. Phys 70 2014 
[I61 Sarychev A K and Vinogradov A P 1981 J.  Phy3, C; SoLidStnte Phys. 14 U87 

Fogelholm R 1981 J. Pkys. C: Solidstate Pkys. 13 U71 

problem 1 I 


